

ADDENDUM NO. 2

PROJECT:	Indiana School for the Deaf, Building 8 HVAC Renovation
DAPW PROJECT NO:	49026008-20-040
R&B PROJECT NO:	2148-02
DATE:	10/26/2022
THIS ADDENDUM CONS	ISTS OF (1) 8 - 1/2" X 11" PAGE AND (4) 30" X 42" PAGES.
The following additions, I	revisions and modifications are hereby made part of the con

The following additions, revisions and modifications are hereby made part of the contract documents, which shall be amended accordingly. Acknowledge receipt of addenda on bid form. Failure of your acknowledgement of receipt of this addendum may result in rejection of your offer.

SPECIFICATIONS

- <u>1. 01 10 00 Summary:</u>
 - a. Change 1.5 Construction Dates, part A to read:
 - A. The Work is to start on or after January 1st, 2023 and shall be complete with the major Work by August 2024. Controls phasing can begin as soon as contracts are fully signed and executed.

DRAWINGS

- <u>1.</u> <u>Cover Sheet:</u>
 - a. Updated alternate #1 to add CSAC-6 scope for the installation of DMC-6.
- <u>2.</u> <u>MD114B:</u>
 - a. Added additional demo scope for CSAC-6 for alternate #1 to be able to install DMC-6.
- <u>3. M201:</u>
 - a. Added DMC-6 to the SA ductwork from CSAC-6 for alternate #1
- <u>4. M601:</u>
 - a. Added the Duct Mounted Coil Schedule.

SIGNED: Corey Lecher

rossbar.com

Indiana School For The Deaf

Indiana School for the Deaf, Building #8 HVAC Renovation DAPW Project No. 49026008-20-040

1200 E 42nd St, Indianapolis, IN 46205 ROSS & BARUZINNI PROJ NO:2148-02

M.E.P.

Ross & Baruzzini, Inc. 8250 Haverstick Rd. Suite 285 Indianapolis, IN 46240 Telephone: 317.638.8383

ISSUED FOR CONSTRUCTION - 09/29/2022

PROPOSED PHASE 2: ALL WORK IN PENTHOUSES, INCLUDING AIR HANDLER AND COIL ALTERNATES. WORK TO BE STARTED IMMEDIATELY FOLLOWING PHASE 1 AND TO BE COMPLETED BY 07/28/23. PROPOSED PHASE 5: ALL INDOOR WORK IN AREA INDICATED. PROPOSED PHASE 2: ALL WORK IN PENTHOUSES, INCLUDING AIR HANDLER AND COIL ALTERNATES. WORK TO BE STARTED IMMEDIATELY FOLLOWING PHASE 1 AND TO BE COMPLETED BY 07/28/23.

1000 60 m D 99 CD (CO) π CONSTRUCTION LAY-DOWN AREA A CONTRACTOR OF A CONTRACTOR OF

> PROJECT WILL NEED TO BE COMPLETED IN PHASES. WINNING CONTRACTOR TO PROVIDE A DETAILED PHASING PLAN WITHIN 2 WEEKS OF PROJECT AWARD. PROPOSED PHASING PLAN TO BE SUBMITTED TO ARCHITECT AND OWNER FOR APROVAL, PRIOR TO COMMENCING ANY WORK. INTERIOR OF THE BUILDING IS GENERALLY SEPARATED VERTICALLY AND CAN BE PHASED VERTICALLY BY EACH AHU TOWER. INTERIOR WORK CAN BE COMPLETED PRIOR TO ROOFTOP WORK SO AHU'S CAN BE REPLACED AT SAME TIME OVER A BREAK IN THE SCHOOL CALENDAR, COORDINATE WITH OWNER. BUILDING TO BE PARTIALLY OCCUPIED THROUGHOUT CONSTRUCTION, CONTRACTOR MUST PUT AWAY AND SECURE TOOLS. EQUIPMENT, AND SUPPLIES AT THE END OF EACH WORK DAY. WORK AREA'S ARE TO BE SWEPT UP AND KEPT GENERALLY CLEAN AT THE END OF EACH WORK DAY. CONTRACTOR WILL HAVE ACCESS TO DORM ROOMS IN EACH PHASE TO SECURELY STORE THEIR TOOLS, EQUIPMENT, AND SUPPLIES.

-PROPOSED PHASE 1: INDOOR WORK TO BE COMPLETED ON OR BEFORE 05/12/23.

PROPOSED PHASE 2: ALL WORK IN PENTHOUSES, INCLUDING AIR HANDLER AND COIL ALTERNATES. WORK TO BE STARTED IMMEDIATELY FOLLOWING PHASE 1 AND TO BE COMPLETED BY 07/28/23.

PROJECT DATA

PROPOSED PHASE 2: ALL WORK IN PENTHOUSES, INCLUDING AIR HANDLER AND COIL ALTERNATES. WORK TO BE STARTED IMMEDIATELY FOLLOWING PHASE 1 AND TO BE COMPLETED BY 07/28/23. PROPOSED PHASE 3: ALL INDOOR WORK IN AREA INDICATED.

- PROPOSED PHASE 2: ALL WORK IN PENTHOUSES, INCLUDING AIR HANDLER AND COIL ALTERNATES AND INDOOR WORK IN CENTRAL AREA. WORK TO BE STARTED IMMEDIATELY FOLLOWING PHASE 1 AND TO BE COMPLETED BY

07/28/23.

BUILDING DEPARTMENT: STATE OF INDIANA, DEPARTMENT OF HOMELAND SECURITY, CITY OF INDIANAPOLIS, DEPARTMENT OF CODE ENFORCEMENT

> 2012 INDIANA MECHANICAL CODE 2012 INDIANA PLUMBING CODE 2009 INDIANA ELECTRIC CODE INDIANA ACCESSIBILITY CODES

$\underline{\bigwedge}$
G FOR THE FOLLOWING ALTERNATES:
work as required to install new coil for CSAC-1, 2, 6, 7, 8, and 9. oils and connect existing ductwork to new ductwork at CSAC-1,
obe controllers, and all valves, the mosters, etc. in piping
penthouse and connect with unit heater and new coil as
ment. ish CSAC-1, 2, 7, 8, and 9 along with the associated condensing
w CSAC-1, 2, 7, 8, and 9 along with the associated condensing stwork and piping as required to connect units. In penthouse and connect with unit heater and new AHU's as
haust fans. controls. IU replacement CSAC-6. ish CSAC-6 along with the associated condensing units. w CSAC-6 along with the associated condensing units. Provide ng as required to connect units. o penthouse and connect as indicated. haust fan. controls. IU replacement CSAC-4 and CSAC-5 (Alternate 3 must be
ish CSAC-4 and 5 along with the associated condensing units. w CSAC-4 and 5 along with the associated condensing units. and piping as required to connect units. haust fans.
I Air Conditioner (PTAC) replacement. C units and provide new.

NOT 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	REFERE SOUND PROVID PROVID ELECTR UNIT TC PROVID UNIT SP PROVID PROVID PROVID	ENCE SPECIFIC I POWER LEVEL E WITH INVERTI E UNIT WITH SIN CAL CONTRAC D BE MOUNTED (E PRICING UND E PRICING UND E HYGROMATIK E PRICING UND	EQUIPME RATINGS ER-READ NGLE POI TOR TO F DN EQUIF ER DORM SIZED TC ER GYM / DDS MO ER COMM
M	ARK		
ID	#	MFR.	MOD
AHU	1	YORK	XTI-60
AHU	2	YORK	XTI-60
AHU	4	YORK	XTI-54
AHU	5	YORK	XTI-54
AHU	6	YORK	XTI-69
AHU	7	YORK	XTI-57
AHU	8	YORK	XTI-60
AHU	9	YORK	XTI-54

NOTES	<u>8:</u>		
MA	RK		
ID	щ	CAPACI	TY (MBH)
U	#	SENS.	TOT
AHU	1	345	50
AHU	2	373	54
AHU	4	-	-
AHU	5	-	-
AHU	6	428	61
AHU	7	312	45
AHU	8	383	56
AHU	9	259	41

NOTE	<u>=S:</u>		
1. 2.	SC PF	OUND POWER LEVEL RAT ROVIDE WITH INVERTER-F	2
3.	FL	JSED DISCONNECT SWITC	2
4.	VF	D TO PROVIDED AND INS	;
5.	PF	ROVIDE AS COMMONS AH	ι
6.	PF	ROVIDE AS PART OF AHU	ł
м л	RK		L
ID	#	MFR.	
ID WRF	# 1	MFR. GREENHECK	
ID WRF WRF	# 1 2	MFR. GREENHECK GREENHECK	
ID WRF WRF WRF	# 1 2 6	MFR. GREENHECK GREENHECK GREENHECK	
ID WRF WRF WRF WRF	# 1 2 6 7	MFR. GREENHECK GREENHECK GREENHECK GREENHECK	
ID WRF WRF WRF WRF WRF	# 1 2 6 7 8	MFR. GREENHECK GREENHECK GREENHECK GREENHECK GREENHECK	
ID WRF WRF WRF WRF WRF WRF	# 1 2 6 7 8 9	MFR. GREENHECK GREENHECK GREENHECK GREENHECK GREENHECK GREENHECK	

AIR TERMINAL UNIT SCHEDULE

NOTES: MAX TOTAL PRESSURE DROP SHALL INCLUDE BOX (WHERE APPLICABLE). 2. NOT USED.

ACCESSIBILITY IS REQUIRED FOR EACH VTU BOX. DUCTWORK SHALL BE ADDED AND/OR ORIENTATION CHANGED TO ACCOMMODATE FIELD CONDITIONS. 3.

4. ATU WITH A VCWC ID HAVE EXISTING HOT WATER COILS. THE EXISTING CONTROL VALVES SHALL BE REPLACED WITH NEW INCL

MA	RK					
ID	#	MFR.	MODEL	ROUND DUCT INLET SIZE (IN)	OUTLET DUCT SIZE (IN)	
VCCC	08	TRANE	VRRF	8	8	
VCCC	12	TRANE	VRRF	8	8	
VCCC	20	TRANE	VRRF	10	10	
VCCC	30	TRANE	VRRF	10x18	10x18	
VCWC	12	TRANE	VRRF	10	10	
VCWC	30	TRANE	VRRF	10x18	10x18	
VTCC	04	TRANE	VRRF	6	6	
VTCC	05	TRANE	VRRF	6	6	
VTCC	08	TRANE	VRRF	8	8	

				HUN	MIDIFI	ER SCHE	DULE					
UNIT NUMBER	LOCATION	HUMIDIFIER CONFIGURATION	TOTAL AIRFLOW (CFM)	MIN.OA (CFM)	DESIGN DB/WB (DEG F)	HUMIDIFICATION STEAM (LBS/HR)	SOURCE STEAM (PSI)	DUCT WIDTH (IN)	DUCT HEIGHT (IN)	ABSORPTION DISTANCE-MAX (IN)	BASIS OF DESIGN	NOTES
AHU-1	Roof	HORIZ. DUCT	10650	5050	70/55.6	127	2	93	60	36	HygroMatik DDS	1,2,3,4,5
AHU-2	Roof	HORIZ. DUCT	11600	5500	70/55.6	139	2	93	60	36	HygroMatik DDS	1,2,3,4,5
						1			1			1
AHU-6	Roof	HORIZ. DUCT	13600	5000	70/55.6	126	2	93	70	36	HygroMatik DDS	1,2,3,4,6
AHU-7	Roof	HORIZ. DUCT	9800	4800	70/55.6	121	2	93	54	36	HygroMatik DDS	1,2,3,4,5
AHU-8	Roof	HORIZ. DUCT	11500	6200	70/55.6	156	2	93	60	36	HygroMatik DDS	1,2,3,4,5
AHU-9	Roof	HORIZ. DUCT	8550	4000	70/55.6	101	2	93	54	36	HygroMatik DDS	1,2,3,4,5
NOTES:												
	1. INSTALL HUMIDIFIER	DISTRIBUTORS IN AIR DU	JCT. SEAL AROL	IND DISTRIBUTO	OR AIR TIGHT.	VERIFY EXACT DIME	NSIONS.					
	2. HUMIDIFIER MODULA	TING ELECTRIC ACTUAT	OR TO ACCEPT	0-10 VDC CONTF	ROL SIGNAL FI	ROM BAS SYSTEM.						
	3. PROVIDE WALL MOUN	NTED MODULATING CON	TROL, DUCT MO	UNTED HI-LIMIT	HUMIDISTAT A	AND AIR PROVING SW	/ITCH.					
	4. PROVIDE STAINLESS	STEEL DRAIN PAN UNDE	R HUMIDIFIER D	ISTRIBUTORS.								
	5. PROVIDE AS DORM A	HU ALTERNATE.										
	6. PROVIDE AS COMMO	NS AHU ALTERNATE.										

		C	DUCT MC	UNTED		SCHEDL	JLE ·	- ALTE	RNA	TE '	1			
NOTES: 1.	COIL	TO BE MOUNTED IN THE	DUCTWORK DO	WNSTREAM OI	F THE CSAC L	ISTED IN THE S	ERVICE	COLUMN.						
MA	RK				MAY					HOT W	ATER H	EATING		
ID	#	MFR.	TYPE	SERVICE	AIRFLOW (CFM)	DUCT SIZE (WxL) (IN)	(IN WC)	CAPACITY (MBH)	EAT (°F)	EWT (°F)	LWT (°F)	FLOW (GPM)	MAX WPD (FT)	NOTES
DMC	1	JOHNSON CONTROLS	HOT WATER	CSAC-1	10,650	36 x 35	0.63	427.5	60	180	140	22.0	2.6	1
DMC	2	JOHNSON CONTROLS	HOT WATER	CSAC-2	11,600	36 x 35	0.68	446.9	60	180	140	23.0	2.8	1
DMC	6	JOHNSON CONTROLS	HOT WATER	CSAC-6	13,600	45 x 36	0.56	510.5	60	180	140	26.3	2.9	1
DMC	7	JOHNSON CONTROLS	HOT WATER	CSAC-7	9,800	36 x 35	0.52	373.1	60	180	140	19.2	2.0	1
DMC	8	JOHNSON CONTROLS	HOT WATER	CSAC-8	11,500	36 x 35	0.67	444.5	60	180	140	22.9	2.8	1
	g	JOHNSON CONTROLS	HOT WATER	CSAC-9	8,550	36 x 35	0.37	324.2	60	180	140	16.6	1.5	1

AIR HANDLING UNIT SCHEDULE (1)

IENT COMPONENT FOR ELECTRICAL DATA WHEN MULTIPLE POWER CONNECTIONS ARE REQUIRED. S SHOWN IN DECIBELS, REFER TO 10(-12) WATTS CALCULATED PER AMCA STANDARD 301.

DY OR INVERTER-DUTY MOTOR FOR VARIABLE SPEED OPERATION. OINT ELECTRICAL CONNECTION.

PROVIDE VFD'S AND NON-FUSED DISCONNECT SWITCHES. JIPMENT RAIL OF SUFFICIENT HEIGHT TO ALLOW FULL SIZE CONDENSATE TRAP FROM UNIT.

RM AHU ALTERNATE. O ALLOW TO FIT THRU A STANDARD 36" SINGLE DOOR. IF SECTIONS ARE TOO LARGE TO FIT THRU DOOR THEN WALL LOUVER AND DUCTWORK TO BE REMOVED AND REINSTALLED TO MATCH EXISTING AT NO CHANGE IN... AHU ALTERNATE.

ODEL DIRECT STEAM INJECTION HUMIDIFIER. ABSORPTION DISTANCE TO BE NO GREATER THAN 36", VERIFY DUCT SIZE WITH EXISTING CONDITIONS. MONS AHU ALTERNATE.

					MAY				SUPPLY FAN			
FI	TYPF		MIN OA (CEM)	MAX SIZE	OPERATING	TOTAL	STATIC P	RESSURE			ΜΑΧ ΕΛΝ	-
				(LxWxH)	WEIGHT (LBS)	AIRFLOW (CFM)	TSP (IN WC)	ESP (IN WC)	DRIVE	SIZE (IN)	SPEED (RPM)	
)x90	SPLIT DX	ROOF	5050	10'10x7'9x5'0	4200	10650	3.51	2.5	BELT	20	1777	-
)x90	SPLIT DX	ROOF	5500	10'10x7'9x5'0	4200	11600	3.6	2.5	BELT	20	1856	-
x90	HTG ONLY	ROOF	5050	8'8x7'9x4'6	3200	10000	1.65	1.0	BELT	20	1438	
x90	HTG ONLY	ROOF	5050	8'8x7'9x4'6	3200	10000	1.65	1.0	BELT	20	1438	-
x93	SPLIT DX	ROOF	5000	11'4x7'9x5'10	5100	13600	3.74	2.5	BELT	25	1316	-
′x90	SPLIT DX	ROOF	4800	10'9x7'4x4'6	4200	9800	3.3	2.5	BELT	20	1681	
)x90	SPLIT DX	ROOF	6200	10'10x7'9x5'0	4500	11500	3.75	2.5	BELT	22	1523	
x90	SPLIT DX	ROOF	4000	10'4x7'9x4'6	4100	8550	3.3	2.5	BELT	20	1681	Ĩ

	AIR H	ANDLIN	G UNIT S	SCHEDU	LE (3)			
			DIRECT EXP	ANSION COIL				
	MAX FACE	E	AT	LAT (DB / WB	REFRIGERAN	# OF	MAX PD AIR	CONDENSING
-	VELC. (FPM)	DB (°F)	WB (°F)	°F)	T TYPE	CIRCUITS	(IN WC)	UNIT ID #
	415	84.48	68.62	53.2 / 52.6	R-410A	20	0.65	CU-1
	450	84.48	68.62	53.3 / 52.7	R-410A	20	0.68	CU-2
		-	-	-				
		-	-	-				
	426	82.35	67.21	51.9 / 51.5	R-410A	19	0.81	CU-6
	380	84.80	68.83	53.9 / 53.1	R-410A	16	0.50	CU-7
	446	84.5	68.6	52.2 / 51.8	R-410A	20	0.85	CU-8
	353	84.36	68.54	55.0 / 54.1	R-410A	20	0.42	CU-9

<u>NOTE</u>	
MA	RK
ID	
AHU	

FAN SCHEDULE

INGS SHOWN IN DECIBE READY OR INVERTER-DU	ELS, REFERRED TO 10(-12) WA JTY MOTOR FOR VARIABLE SI	ATTS CALCULATED PER AMCA PEED OPERATION. PROVIDE V	STANDARD 301. /ITH WALL SLEEVE	AND ROOF EQ	UIPMENT SUPP	ORTS.																			
CH TO BE PROVIDED AND STALLED BY ELECTRICAL	D INSTALLED BY MANUFACTU _ CONTRACTOR.	JRER.																							
IU ALTERNATE.																									
ALTERNATE.								1	1	1											l				
												n n	/IAX SOI	UND PO	WER RA	TING (II	NLET / O	OUTLET)			E	LECTR	ICAL DAT	`A	
																· · ·									
MODEL	TYPE	LOCATION	SERVICE	DRIVE		ESP (IN WC)					AIN FAN EFF.				OCT	AVE								DUADE	NOTES
MODEL	ТҮРЕ	LOCATION	SERVICE	DRIVE	AIRFLOW (CFM)	ESP (IN WC)	MAX FAN SPEED (RPM)	MOTOR SPEED (RPM)	MIN STATIC EFF (%)	LOSS (%)	GRADE	63	125	250	OCT 500	AVE 1000	2000	4000	8000	MAX WEIGHT (LBS)	AMPS	HP	VOLTS	PHASE	NOTES
MODEL SBE-3H42-30	SIDEWALL BELT DRIVE	LOCATION PENTHOUSE SIDEWALL	SERVICE PENTHOUSE	BELT	AIRFLOW (CFM) 11,600	ESP (IN WC) 0.5	MAX FAN SPEED (RPM) 656	MOTOR SPEED (RPM) 1725	MIN STATIC EFF (%) 43	DESIGN DRIVE LOSS (%)M4.0	GRADE	63 90	125 88	250 88	OCT 500 85	AVE 1000 81	2000 77	4000 72	8000 69	MAX WEIGHT (LBS) 550	AMPS 4.8	HP 3	VOLTS 460	PHASE 3	NOTES 1, 2, 3, 4, 6
MODEL SBE-3H42-30 SBE-3H42-30	TYPE SIDEWALL BELT DRIVE SIDEWALL BELT DRIVE	LOCATION PENTHOUSE SIDEWALL PENTHOUSE SIDEWALL	SERVICE PENTHOUSE PENTHOUSE	BELT BELT	AIRFLOW (CFM) 11,600 11,600	ESP (IN WC) 0.5 0.5	MAX FAN SPEED (RPM) 656 656	MOTOR SPEED (RPM) 1725 1725	MIN STATIC EFF (%) 43 43	DESIGN DRIVE LOSS (%)N4.04.0	65 65	63 90 90	125 88 88	250 88 88	OCT 500 85 85	AVE 1000 81 81	2000 77 77	4000 72 72	8000 69 69	MAX WEIGHT (LBS) 550 550	AMPS 4.8 4.8	HP 3 3	VOLTS 460 460	PHASE 3 3	NOTES 1, 2, 3, 4, 6 1, 2, 3, 4, 6
MODEL SBE-3H42-30 SBE-3H42-30 SBE-3H42-30	TYPE SIDEWALL BELT DRIVE SIDEWALL BELT DRIVE SIDEWALL BELT DRIVE	LOCATION PENTHOUSE SIDEWALL PENTHOUSE SIDEWALL PENTHOUSE SIDEWALL	SERVICE PENTHOUSE PENTHOUSE PENTHOUSE	BELT BELT BELT	AIRFLOW (CFM) 11,600 11,600 11,600	ESP (IN WC) 0.5 0.5 0.5	MAX FAN SPEED (RPM) 656 656 656	MOTOR SPEED (RPM) 1725 1725 1725	MIN STATIC EFF (%) 43 43 41	LOSS (%) 4.0 4.0 4.0 4.0 4.0	65 65 65 65	63 90 90 90	125 88 88 88	250 88 88 88	OCT 500 85 85 85	AVE 1000 81 81 81	2000 77 77 77 77	4000 72 72 72 72	8000 69 69 69	MAX WEIGHT (LBS) 550 550 550 550	AMPS 4.8 4.8 4.8	HP 3 3 3	VOLTS 460 460 460	PHASE 3 3 3 3	NOTES 1, 2, 3, 4, 6 1, 2, 3, 4, 6 1, 2, 3, 4, 5
MODEL SBE-3H42-30 SBE-3H42-30 SBE-3H42-30 SBE-3H42-30	TYPE SIDEWALL BELT DRIVE	LOCATION PENTHOUSE SIDEWALL PENTHOUSE SIDEWALL PENTHOUSE SIDEWALL PENTHOUSE SIDEWALL	SERVICE PENTHOUSE PENTHOUSE PENTHOUSE PENTHOUSE	BELT BELT BELT BELT BELT	AIRFLOW (CFM) 11,600 11,600 11,600	ESP (IN WC) 0.5 0.5 0.5 0.5	MAX FAN SPEED (RPM) 656 656 656 656 656	MOTOR SPEED (RPM) 1725 1725 1725 1725	MIN STATIC EFF (%) 43 43 41 43	And Control And Control	65 65 65 65 65	63 90 90 90 90 90	125 88 88 88 88 88	250 88 88 88 88	OCT 500 85 85 85 85	AVE 1000 81 81 81 81 81	2000 77 77 77 77 77	4000 72 72 72 72 72 72	8000 69 69 69 69 69	MAX WEIGHT (LBS) 550 550 550 550 550	AMPS 4.8 4.8 4.8 4.8 4.8	HP 3 3 3 3 3	VOLTS 460 460 460 460 460	PHASE 3 3 3 3 3 3	NOTES 1, 2, 3, 4, 6 1, 2, 3, 4, 6 1, 2, 3, 4, 5 1, 2, 3, 4, 6
MODEL SBE-3H42-30 SBE-3H42-30 SBE-3H42-30 SBE-3H42-30 SBE-3H42-30	TYPE SIDEWALL BELT DRIVE SIDEWALL BELT DRIVE	LOCATION PENTHOUSE SIDEWALL PENTHOUSE SIDEWALL PENTHOUSE SIDEWALL PENTHOUSE SIDEWALL PENTHOUSE SIDEWALL	SERVICE PENTHOUSE PENTHOUSE PENTHOUSE PENTHOUSE	BELT BELT BELT BELT BELT BELT	AIRFLOW (CFM) 11,600 11,600 11,600 11,600	ESP (IN WC) 0.5 0.5 0.5 0.5 0.5 0.5	MAX FAN SPEED (RPM) 656 656 656 656 656 656 656	MOTOR SPEED (RPM) 1725 1725 1725 1725 1725	MIN STATIC EFF (%) 43 43 43 43 43 43	And Control And Control	65 65 65 65 65 65 65	63 90 90 90 90 90 90	125 88 88 88 88 88 88 88	250 88 88 88 88 88 88	OCT 500 85 85 85 85 85 85	AVE 1000 81 81 81 81 81 81	2000 77 77 77 77 77 77	4000 72 72 72 72 72 72 72	8000 69 69 69 69 69 69	S50 550 550 550 550 550 550 550 550	AMPS 4.8 4.8 4.8 4.8 4.8 4.8	HP 3 3 3 3 3 3	VOLTS 460 460 460 460 460 460	PHASE 3 3 3 3 3 3 3	NOTES 1, 2, 3, 4, 6 1, 2, 3, 4, 6 1, 2, 3, 4, 5 1, 2, 3, 4, 6 1, 2, 3, 4, 6 1, 2, 3, 4, 6

CLUDING DDC	ACTUATORS.		
AIRFLOW			
RANGE (MAX/MIN CFM)	MAX APD (IN WC)	NC	NOTES
700 / 490	0.67	32	1, 3
1000 / 710	0.46	29	1, 3
1600 / 1010	0.52	28	1, 3
2400 / 1610	0.24	26	1, 3
1000 / 710	0.55	29	1, 3, 4
2400 / 1610	0.51	28	1, 3, 4
200 / 100	0.11	18	1, 3
350 / 210	0.31	29	1, 3
700 / 560	0.4	33	1, 3

10TES: 1. 2 <u>.</u>	MANUF	ACTURER TO PRODE PRICING AS DO	OVIDE UNIT MOUNTED N DRM AHU ALTERNATE.	ON-FUSED DISCON	INECT SWITCH.	REUSE EXISTI	NG ROOF CURB.											
3.	_					PROVID	E PRICIN	IG AS	COM	IONS	s ahu ai	TERNA	TE.					
MA	RK					COOLING	OA TE	MP	COMPR	ESSOR		CONDENSER				ELEC	CTRICAL	_ D/
п	ш	MFR.	MODEL	LOCATION	SERVICE	CAP (MBH)	DESIGN AMB	MIN AMB	OTV	TONS		AIR COOLED		UNIT EER	REFRIG			<u>,</u> Р
טו	#						(°F)	(°F)	QIY	EA	QTY FANS	HP EA	NOM RPM			FLA	VOLIS	'
CU	1	YORK	J50YDC00A	ROOF	AHU-1	538.9	95	45	2	25	4	1.5	1140	14.4	R410A	74	480	
CU	2	YORK	J50YDC00A	ROOF	AHU-2	538.9	95	45	2	25	4	1.5	1140	14.4	R410A	74	480	
CU	6	YORK	J50YDC00A	ROOF	AHU-6	538.9	95	45	2	25	4	1.5	1140	14.4	R410A	74	480	
CU	7	YORK	J50YDC00A	ROOF	AHU-7	538.9	95	45	2	25	4	1.5	1140	13.4	R410A	74	480	
CU	8	YORK	J50YDC00A	ROOF	AHU-8	538.9	95	45	2	25	4	1.5	1140	13.4	R410A	74	480	T
CU	9	YORK	J40YDC00A	ROOF	AHU-9	453.5	95	45	2	20	4	1.5	1140	13.8	R410A	53	480	

<u>NOTE</u> 1.	<u>IOTES:</u> 1. PROVIDE WALL SLEEVE ADAPTER TO UTILIZE EXISTING WALL OPENINGS.																					
MA	RK					ΤΟΤΑΙ				COC	DLING D	DATA				HEA	TING DAT	ГА	I	ELECTF	RICAL DA	TA
ID	#	MFR.	MODEL	TYPE	LOCATION	AIRFLOW (CFM)	MIN. OA (CFM)	AMBIE	NT (°F)	EAT	(°F)		MIN EFF	AMBIE NT (°F)	EAT (°E)	TYPE		CONTROL	AMPS	HP	VOLTS	PH/
								DB	WB	DB	WB			DB								
PTAC	1	FRIEDRICH	PZE12R3SB-A	ELECTRIC HEAT	*SEE PLANS	470	75	95	72	78	65	12	10.6	-5	50	ELECTRIC	12.3	REMOTE TSTAT	5.92	0.1	265	

76.91 2, 3, 4, 5, 6, 7, 8, 10

	AIR HANDLING UNIT SCHEDULE (2)												
NOTES	<u>=S:</u>												
MA	RK					HEATING HOT	WATER COIL						
ID	#	CAPACITY	MAX FACE	FAT (°F)		WATER FLOW	FWT (°F)	I WT (%F)	POWS	MAX	(PD		
	#	(MBH)	VELC. (FPM)			(GPM)			ROW5	AIR (IN WC)	WATER (FT)		
AHU	1	345	395	42	70	22	180	147	1	0.03	1.9		
AHU	2	356	428	42	70	22	180	146.8	1	0.03	1.9		
AHU	4	1238	410	-5	95	25	180	130.9	3	0.22	4.6		
AHU	5	1238	410	-5	95	25	180	130.9	3	0.22	4.6		
AHU	6	406	421	48	70	27	180	149.1	1	0.03	2.6		
AHU	7	326	381	42	72.4	22	180	149.6	1	0.02	2.0		
AHU	8	355	424	42	70	22	180	146.9	1	0.03	1.9		
AHU	9	290	350	42	72.9	18	180	146.9	1	0.02	1.4		

					AIR HAI	NDLING	UNIT SC	HEDULI	E (4)								
	FILT	TERS	MAX SOUND POWER RATING (DISCHARGE / INLET / RADIATED)									ELECTRICAL DATA					
	P	RE															
	TYPE	DESIGN APD (IN WC)	63	125	250	500	1000	2000	4000	8000	AMPS	HP	VOLTS PHA	PHASE			
	MERV 8	0.2	92	90	89	88	88	87	85	85	24.3	20	480	3			
	MERV 8	0.2	93	92	91	90	90	88	86	85	24.3	20	480	3			
	MERV 8	0.2	88	87	86	85	85	81	78	78	12.5	10	480	3			
	MERV 8	0.2	88	87	86	85	85	81	78	78	12.5	10	480	3			
	MERV 8	0.2	96	95	94	93	93	91	86	86	24.3	20	480	3			
	MERV 8	0.2	93	92	91	90	90	89	86	85	17.7	15	480	3			
	MERV 8	0.2	93	92	91	90	90	88	86	85	24.3	20	480	3			
	MERV 8	0.2	91	90	89	89	88	87	84	83	17.7	15	480	3			

PUMP SCHEDULE

1. ELECTRICAL CONTRACTOR TO PROVIDE MOTOR STARTER AND DISCONNECT SWITCH.

	MODEL	TYPE		SERVICE	WATER FLOW			MOTOR	ELECTRICAL DATA			
	WODEL	LIFE	ECCATION	SERVICE	(GPM)	т о п (гт)		SPEED (RPM)	AMPS	WATTS	VOLTS	PH
ETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-1	22	6	94%	2950	1.1	.125	120	
ETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-2	22	6	94%	2950	1.1	.125	120	
ETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-4	25	10	94%	2950	1.1	.125	120	
ETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-5	25	10	94%	2950	1.1	.125	120	
ETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-6	27	6	94%	2950	1.1	.125	120	1
ETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-7	22	6	94%	2950	1.1	.125	120	
ETT	NRF-33	INLINE CENTRIFUGAL	ROOF	AHU-8	22	6	94%	2950	1.1	.125	120	
ETT	NRF-22	INLINE CENTRIFUGAL	ROOF	AHU-9	18	13	94%	2940	0.8	.92	120	

CONDENSING LINIT SCHEDULE

PACKAGE TERMINIAL AIR CONDITIONER SCHEDUILE - ALTERNATE

